ロード中...
Predicting COVID-19 cases with unknown homogeneous or heterogeneous resistance to infectivity
We present a restricted infection rate inverse binomial-based approach to better predict COVID-19 cases after a family gathering. The traditional inverse binomial (IB) model is inappropriate to match the reality of COVID-19, because the collected data contradicts the model’s requirement that varianc...
保存先:
| 出版年: | PLoS One |
|---|---|
| 主要な著者: | , , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
Public Library of Science
2021
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8282037/ https://ncbi.nlm.nih.gov/pubmed/34264972 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0254313 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|