ロード中...
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generates descri...
保存先:
| 出版年: | Sci Rep |
|---|---|
| 主要な著者: | , , , , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
Nature Publishing Group UK
2021
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8076181/ https://ncbi.nlm.nih.gov/pubmed/33903606 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-021-88027-8 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|