ロード中...

Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks

Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generates descri...

詳細記述

保存先:
書誌詳細
出版年:Sci Rep
主要な著者: Krishnapriyan, Aditi S., Montoya, Joseph, Haranczyk, Maciej, Hummelshøj, Jens, Morozov, Dmitriy
フォーマット: Artigo
言語:Inglês
出版事項: Nature Publishing Group UK 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC8076181/
https://ncbi.nlm.nih.gov/pubmed/33903606
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-021-88027-8
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!