Caricamento...

Comparison of Prediction Models for Acute Kidney Injury Among Patients with Hepatobiliary Malignancies Based on XGBoost and LASSO-Logistic Algorithms

BACKGROUND: Based on the admission data, we applied the XGBoost algorithm to create a prediction model to estimate the AKI risk in patients with hepatobiliary malignancies and then compare its prediction capacity with the logistic model. METHODS: We reviewed clinical data of 7968 and 589 liver/gallb...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Pubblicato in:Int J Gen Med
Autori principali: Zhang, Yunlu, Wang, Yimei, Xu, Jiarui, Zhu, Bowen, Chen, Xiaohong, Ding, Xiaoqiang, Li, Yang
Natura: Artigo
Lingua:Inglês
Pubblicazione: Dove 2021
Soggetti:
Accesso online:https://ncbi.nlm.nih.gov/pmc/articles/PMC8057825/
https://ncbi.nlm.nih.gov/pubmed/33889012
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.2147/IJGM.S302795
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !