Caricamento...
Comparison of Prediction Models for Acute Kidney Injury Among Patients with Hepatobiliary Malignancies Based on XGBoost and LASSO-Logistic Algorithms
BACKGROUND: Based on the admission data, we applied the XGBoost algorithm to create a prediction model to estimate the AKI risk in patients with hepatobiliary malignancies and then compare its prediction capacity with the logistic model. METHODS: We reviewed clinical data of 7968 and 589 liver/gallb...
Salvato in:
| Pubblicato in: | Int J Gen Med |
|---|---|
| Autori principali: | , , , , , , |
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
Dove
2021
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8057825/ https://ncbi.nlm.nih.gov/pubmed/33889012 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.2147/IJGM.S302795 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|