Chargement en cours...

RESIDUAL RECURRENT NEURAL NETWORK FOR SPEECH ENHANCEMENT

Most current speech enhancement models use spectrogram features that require an expensive transformation and result in phase information loss. Previous work has overcome these issues by using convolutional networks to learn the temporal correlations across high-resolution waveforms. These models, ho...

Description complète

Enregistré dans:
Détails bibliographiques
Publié dans:Proc IEEE Int Conf Acoust Speech Signal Process
Auteurs principaux: Abdulbaqi, Jalal, Gu, Yue, Chen, Shuhong, Marsic, Ivan
Format: Artigo
Langue:Inglês
Publié: 2020
Sujets:
Accès en ligne:https://ncbi.nlm.nih.gov/pmc/articles/PMC7954533/
https://ncbi.nlm.nih.gov/pubmed/33716575
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/icassp40776.2020.9053544
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!