ロード中...

Information-Theoretic Generalization Bounds for Meta-Learning and Applications

Meta-learning, or “learning to learn”, refers to techniques that infer an inductive bias from data corresponding to multiple related tasks with the goal of improving the sample efficiency for new, previously unobserved, tasks. A key performance measure for meta-learning is the meta-generalization ga...

詳細記述

保存先:
書誌詳細
出版年:Entropy (Basel)
主要な著者: Jose, Sharu Theresa, Simeone, Osvaldo
フォーマット: Artigo
言語:Inglês
出版事項: MDPI 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7835863/
https://ncbi.nlm.nih.gov/pubmed/33478002
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/e23010126
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!