Yüklüyor......

Training confounder-free deep learning models for medical applications

The presence of confounding effects (or biases) is one of the most critical challenges in using deep learning to advance discovery in medical imaging studies. Confounders affect the relationship between input data (e.g., brain MRIs) and output variables (e.g., diagnosis). Improper modeling of those...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Nat Commun
Asıl Yazarlar: Zhao, Qingyu, Adeli, Ehsan, Pohl, Kilian M.
Materyal Türü: Artigo
Dil:Inglês
Baskı/Yayın Bilgisi: Nature Publishing Group UK 2020
Konular:
Online Erişim:https://ncbi.nlm.nih.gov/pmc/articles/PMC7691500/
https://ncbi.nlm.nih.gov/pubmed/33243992
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41467-020-19784-9
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!