A carregar...

Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems

To tackle real-world challenges, deep and complex neural networks are generally used with a massive number of parameters, which require large memory size, extensive computational operations, and high energy consumption in neuromorphic hardware systems. In this work, we propose an unsupervised online...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Front Neurosci
Main Authors: Guo, Wenzhe, Fouda, Mohammed E., Yantir, Hasan Erdem, Eltawil, Ahmed M., Salama, Khaled Nabil
Formato: Artigo
Idioma:Inglês
Publicado em: Frontiers Media S.A. 2020
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC7689062/
https://ncbi.nlm.nih.gov/pubmed/33281549
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/fnins.2020.598876
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!