Načítá se...
Predicting progression to septic shock in the emergency department using an externally generalizable machine learning algorithm
OBJECTIVE: Machine-learning (ML) algorithms allow for improved prediction of sepsis syndromes in the ED using data from electronic medical records. Transfer learning, a new subfield of ML, allows for generalizability of an algorithm across clinical sites. We aimed to validate the Artificial Intellig...
Uloženo v:
| Vydáno v: | medRxiv |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
Cold Spring Harbor Laboratory
2020
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7654881/ https://ncbi.nlm.nih.gov/pubmed/33173889 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1101/2020.11.02.20224931 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|