ロード中...

Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction

Artificial intelligence (AI) has demonstrated promise in predicting acute kidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability. Non-interoperable data across hospitals is a major barrier to model transportability. Here, we leverage the US PCO...

詳細記述

保存先:
書誌詳細
出版年:Nat Commun
主要な著者: Song, Xing, Yu, Alan S. L., Kellum, John A., Waitman, Lemuel R., Matheny, Michael E., Simpson, Steven Q., Hu, Yong, Liu, Mei
フォーマット: Artigo
言語:Inglês
出版事項: Nature Publishing Group UK 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7653032/
https://ncbi.nlm.nih.gov/pubmed/33168827
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41467-020-19551-w
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!