Caricamento...
Ensemble-Based Deep Learning for Estimating PM(2.5) over California with Multisource Big Data Including Wildfire Smoke
INTRODUCTION: Estimating PM(2.5) concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic...
Salvato in:
| Pubblicato in: | Environ Int |
|---|---|
| Autori principali: | , , , , , , , , , , |
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
2020
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7643812/ https://ncbi.nlm.nih.gov/pubmed/32980736 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.envint.2020.106143 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|