Cargando...
Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing...
Guardado en:
| Publicado en: | Nat Biotechnol |
|---|---|
| Autores principales: | , , , , , , , , , |
| Formato: | Artigo |
| Lenguaje: | Inglês |
| Publicado: |
Nature Publishing Group US
2022
|
| Materias: | |
| Acceso en línea: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7614077/ https://ncbi.nlm.nih.gov/pubmed/36065022 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41587-022-01427-7 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|