ロード中...

Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics

In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic extension, Koszul m...

詳細記述

保存先:
書誌詳細
出版年:Entropy (Basel)
主要な著者: Barbaresco, Frédéric, Gay-Balmaz, François
フォーマット: Artigo
言語:Inglês
出版事項: MDPI 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7516986/
https://ncbi.nlm.nih.gov/pubmed/33286271
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/e22050498
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!