ロード中...
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forec...
保存先:
| 出版年: | Entropy (Basel) |
|---|---|
| 主要な著者: | , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
MDPI
2019
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7514666/ https://ncbi.nlm.nih.gov/pubmed/33266899 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/e21020184 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|