ロード中...

Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forec...

詳細記述

保存先:
書誌詳細
出版年:Entropy (Basel)
主要な著者: McDermott, Patrick L., Wikle, Christopher K.
フォーマット: Artigo
言語:Inglês
出版事項: MDPI 2019
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7514666/
https://ncbi.nlm.nih.gov/pubmed/33266899
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/e21020184
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!