Wird geladen...

Computational Information Geometry for Binary Classification of High-Dimensional Random Tensors †

Evaluating the performance of Bayesian classification in a high-dimensional random tensor is a fundamental problem, usually difficult and under-studied. In this work, we consider two Signal to Noise Ratio (SNR)-based binary classification problems of interest. Under the alternative hypothesis, i.e.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel)
Hauptverfasser: Pham, Gia-Thuy, Boyer, Rémy, Nielsen, Frank
Format: Artigo
Sprache:Inglês
Veröffentlicht: MDPI 2018
Schlagworte:
Online Zugang:https://ncbi.nlm.nih.gov/pmc/articles/PMC7512719/
https://ncbi.nlm.nih.gov/pubmed/33265294
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/e20030203
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!