ロード中...

Machine learning for effectively avoiding overfitting is a crucial strategy for the genetic prediction of polygenic psychiatric phenotypes

The accuracy of previous genetic studies in predicting polygenic psychiatric phenotypes has been limited mainly due to the limited power in distinguishing truly susceptible variants from null variants and the resulting overfitting. A novel prediction algorithm, Smooth-Threshold Multivariate Genetic...

詳細記述

保存先:
書誌詳細
出版年:Transl Psychiatry
主要な著者: Takahashi, Yuta, Ueki, Masao, Tamiya, Gen, Ogishima, Soichi, Kinoshita, Kengo, Hozawa, Atsushi, Minegishi, Naoko, Nagami, Fuji, Fukumoto, Kentaro, Otsuka, Kotaro, Tanno, Kozo, Sakata, Kiyomi, Shimizu, Atsushi, Sasaki, Makoto, Sobue, Kenji, Kure, Shigeo, Yamamoto, Masayuki, Tomita, Hiroaki
フォーマット: Artigo
言語:Inglês
出版事項: Nature Publishing Group UK 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7442807/
https://ncbi.nlm.nih.gov/pubmed/32826857
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41398-020-00957-5
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!