Загрузка...
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
Standard convolutional filters usually capture unnecessary overlap of features resulting in a waste of computational cost. In this paper, we aim to solve this problem by proposing a novel Learned Depthwise Separable Convolution (LdsConv) operation that is smart but has a strong capacity for learning...
Сохранить в:
| Опубликовано в: : | Sensors (Basel) |
|---|---|
| Главные авторы: | , , , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
MDPI
2020
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7435949/ https://ncbi.nlm.nih.gov/pubmed/32759800 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s20154349 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|