Загрузка...

LdsConv: Learned Depthwise Separable Convolutions by Group Pruning

Standard convolutional filters usually capture unnecessary overlap of features resulting in a waste of computational cost. In this paper, we aim to solve this problem by proposing a novel Learned Depthwise Separable Convolution (LdsConv) operation that is smart but has a strong capacity for learning...

Полное описание

Сохранить в:
Библиографические подробности
Опубликовано в: :Sensors (Basel)
Главные авторы: Lin, Wenxiang, Ding, Yan, Wei, Hua-Liang, Pan, Xinglin, Zhang, Yutong
Формат: Artigo
Язык:Inglês
Опубликовано: MDPI 2020
Предметы:
Online-ссылка:https://ncbi.nlm.nih.gov/pmc/articles/PMC7435949/
https://ncbi.nlm.nih.gov/pubmed/32759800
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s20154349
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!