Caricamento...
Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change
Accurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model selection framework for WMH segmentation. We comp...
Salvato in:
| Pubblicato in: | Neuroinformatics |
|---|---|
| Autori principali: | , , , , , , , , , , , |
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
Springer US
2020
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7338814/ https://ncbi.nlm.nih.gov/pubmed/32062817 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/s12021-019-09439-6 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|