ロード中...

Fooling Automatic Short Answer Grading Systems

With the rising success of adversarial attacks on many NLP tasks, systems which actually operate in an adversarial scenario need to be reevaluated. For this purpose, we pose the following research question: How difficult is it to fool automatic short answer grading systems? In particular, we investi...

詳細記述

保存先:
書誌詳細
出版年:Artificial Intelligence in Education
主要な著者: Filighera, Anna, Steuer, Tim, Rensing, Christoph
フォーマット: Artigo
言語:Inglês
出版事項: 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7334174/
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/978-3-030-52237-7_15
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!