Načítá se...

Dense Depth Estimation in Monocular Endoscopy with Self-supervised Learning Methods

We present a self-supervised approach to training convolutional neural networks for dense depth estimation from monocular endoscopy data without a priori modeling of anatomy or shading. Our method only requires monocular endoscopic videos and a multi-view stereo method, e. g., structure from motion,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Trans Med Imaging
Hlavní autoři: Liu, Xingtong, Sinha, Ayushi, Ishii, Masaru, Hager, Gregory D., Reiter, Austin, Taylor, Russell H., Unberath, Mathias
Médium: Artigo
Jazyk:Inglês
Vydáno: 2019
Témata:
On-line přístup:https://ncbi.nlm.nih.gov/pmc/articles/PMC7289272/
https://ncbi.nlm.nih.gov/pubmed/31689184
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/TMI.2019.2950936
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!