ロード中...

Balancing Exploration and Exploitation in Self-imitation Learning

Sparse reward tasks are always challenging in reinforcement learning. Learning such tasks requires both efficient exploitation and exploration to reduce the sample complexity. One line of research called self-imitation learning is recently proposed, which encourages the agent to do more exploitation...

詳細記述

保存先:
書誌詳細
出版年:Advances in Knowledge Discovery and Data Mining
主要な著者: Kang, Chun-Yao, Chen, Ming-Syan
フォーマット: Artigo
言語:Inglês
出版事項: 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7206262/
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/978-3-030-47436-2_21
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!