Загрузка...
Generative modeling for renal microanatomy
Generative adversarial networks (GANs) have received immense attention in the field of machine learning for their potential to learn high-dimensional and real data distribution. These methods do not rely on any assumptions about the data distribution of the input sample and can generate real-like sa...
Сохранить в:
| Опубликовано в: : | Proc SPIE Int Soc Opt Eng |
|---|---|
| Главные авторы: | , , , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
2020
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7194215/ https://ncbi.nlm.nih.gov/pubmed/32362707 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1117/12.2549891 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|