Wird geladen...

Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment

We investigated the capability of a trained deep learning (DL) model with a convolutional neural network (CNN) in a different scanning environment in terms of ameliorating the quality of synthetic fluid-attenuated inversion recovery (FLAIR) images. The acquired data of 319 patients obtained from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J Clin Med
Hauptverfasser: Ryu, Kyeong Hwa, Baek, Hye Jin, Gho, Sung-Min, Ryu, Kanghyun, Kim, Dong-Hyun, Park, Sung Eun, Ha, Ji Young, Cho, Soo Buem, Lee, Joon Sung
Format: Artigo
Sprache:Inglês
Veröffentlicht: MDPI 2020
Schlagworte:
Online Zugang:https://ncbi.nlm.nih.gov/pmc/articles/PMC7074150/
https://ncbi.nlm.nih.gov/pubmed/32013069
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/jcm9020364
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!