Načítá se...
Generalized Linear Mixed Models with Gaussian Mixture Random Effects: Inference and Application
We propose a new class of generalized linear mixed models with Gaussian mixture random effects for clustered data. To overcome the weak identifiability issues, we fit the model using a penalized Expectation Maximization (EM) algorithm, and develop sequential locally restricted likelihood ratio tests...
Uloženo v:
| Vydáno v: | J Multivar Anal |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
2019
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7021245/ https://ncbi.nlm.nih.gov/pubmed/32063658 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.jmva.2019.104555 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|