Ładuje się......
Deep convolutional neural networks in the classification of dual-energy thoracic radiographic views for efficient workflow: analysis on over 6500 clinical radiographs
DICOM header information is frequently used to classify medical image types; however, if a header is missing fields or contains incorrect data, the utility is limited. To expedite image classification, we trained convolutional neural networks (CNNs) in two classification tasks for thoracic radiograp...
Zapisane w:
| Wydane w: | J Med Imaging (Bellingham) |
|---|---|
| Główni autorzy: | , , , , |
| Format: | Artigo |
| Język: | Inglês |
| Wydane: |
Society of Photo-Optical Instrumentation Engineers
2020
|
| Hasła przedmiotowe: | |
| Dostęp online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6995870/ https://ncbi.nlm.nih.gov/pubmed/32042858 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1117/1.JMI.7.1.016501 |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|