ロード中...
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
BACKGROUND: Identifying different types of cancer based on gene expression data has become hotspot in bioinformatics research. Clustering cancer gene expression data from multiple cancers to their own class is a significance solution. However, the characteristics of high-dimensional and small sample...
保存先:
| 出版年: | BMC Bioinformatics |
|---|---|
| 主要な著者: | , , , , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
BioMed Central
2019
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6936083/ https://ncbi.nlm.nih.gov/pubmed/31888442 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s12859-019-3231-5 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|