Wird geladen...

Improving the Chemical Selectivity of an Electronic Nose to TNT, DNT and RDX Using Machine Learning

We used a 16-channel e-nose demonstrator based on micro-capacitive sensors with functionalized surfaces to measure the response of 30 different sensors to the vapours from 11 different substances, including the explosives 1,3,5-trinitro-1,3,5-triazinane (RDX), 1-methyl-2,4-dinitrobenzene (DNT) and 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel)
Hauptverfasser: Gradišek, Anton, van Midden, Marion, Koterle, Matija, Prezelj, Vid, Strle, Drago, Štefane, Bogdan, Brodnik, Helena, Trifkovič, Mario, Kvasić, Ivan, Zupanič, Erik, Muševič, Igor
Format: Artigo
Sprache:Inglês
Veröffentlicht: MDPI 2019
Schlagworte:
Online Zugang:https://ncbi.nlm.nih.gov/pmc/articles/PMC6928873/
https://ncbi.nlm.nih.gov/pubmed/31783711
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s19235207
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!