Загрузка...

Convolutional neural network model to predict causal risk factors that share complex regulatory features

Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural net...

Полное описание

Сохранить в:
Библиографические подробности
Опубликовано в: :Nucleic Acids Res
Главные авторы: Lee, Taeyeop, Sung, Min Kyung, Lee, Seulkee, Yang, Woojin, Oh, Jaeho, Kim, Jeong Yeon, Hwang, Seongwon, Ban, Hyo-Jeong, Choi, Jung Kyoon
Формат: Artigo
Язык:Inglês
Опубликовано: Oxford University Press 2019
Предметы:
Online-ссылка:https://ncbi.nlm.nih.gov/pmc/articles/PMC6902027/
https://ncbi.nlm.nih.gov/pubmed/31598692
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1093/nar/gkz868
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!