Загрузка...
Convolutional neural network model to predict causal risk factors that share complex regulatory features
Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural net...
Сохранить в:
| Опубликовано в: : | Nucleic Acids Res |
|---|---|
| Главные авторы: | , , , , , , , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
Oxford University Press
2019
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6902027/ https://ncbi.nlm.nih.gov/pubmed/31598692 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1093/nar/gkz868 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|