ロード中...

Recursive Feature Elimination by Sensitivity Testing

There is great interest in methods to improve human insight into trained non-linear models. Leading approaches include producing a ranking of the most relevant features, a non-trivial task for non-linear models. We show theoretically and empirically the benefit of a novel version of recursive featur...

詳細記述

保存先:
書誌詳細
出版年:Proc Int Conf Mach Learn Appl
主要な著者: Escanilla, Nicholas Sean, Hellerstein, Lisa, Kleiman, Ross, Kuang, Zhaobin, Shull, James D., Page, David
フォーマット: Artigo
言語:Inglês
出版事項: 2019
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC6887481/
https://ncbi.nlm.nih.gov/pubmed/31799516
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ICMLA.2018.00014
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!