載入...

Generation of Synthetic CT Images From MRI for Treatment Planning and Patient Positioning Using a 3-Channel U-Net Trained on Sagittal Images

A novel deep learning architecture was explored to create synthetic CT (MRCT) images that preserve soft tissue contrast necessary for support of patient positioning in Radiation therapy. A U-Net architecture was applied to learn the correspondence between input T1-weighted MRI and spatially aligned...

全面介紹

Na minha lista:
書目詳細資料
發表在:Front Oncol
Main Authors: Gupta, Dinank, Kim, Michelle, Vineberg, Karen A., Balter, James M.
格式: Artigo
語言:Inglês
出版: Frontiers Media S.A. 2019
主題:
在線閱讀:https://ncbi.nlm.nih.gov/pmc/articles/PMC6773822/
https://ncbi.nlm.nih.gov/pubmed/31608241
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/fonc.2019.00964
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!