A carregar...

Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features

In this paper, a novel method is proposed to enhance the accuracy of fault diagnosis for rolling bearings. First, an enhanced complementary empirical mode decomposition with adaptive noise (ECEEMDAN) method is proposed by determining two critical parameters, namely the amplitude of added white noise...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Sensors (Basel)
Main Authors: Zhan, Liwei, Ma, Fang, Zhang, Jingjing, Li, Chengwei, Li, Zhenghui, Wang, Tingjian
Formato: Artigo
Idioma:Inglês
Publicado em: MDPI 2019
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC6767346/
https://ncbi.nlm.nih.gov/pubmed/31546904
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s19184047
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!