A carregar...

Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study

OBJECTIVE: Using CT texture analysis and machine learning methods, this study aims to distinguish the lesions imaged via 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT as metastatic and completely responded in patients with known bone metastasis and who were pre...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Br J Radiol
Main Authors: Acar, Emine, Leblebici, Asım, Ellidokuz, Berat Ender, Başbınar, Yasemin, Kaya, Gamze Çapa
Formato: Artigo
Idioma:Inglês
Publicado em: The British Institute of Radiology. 2019
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC6732932/
https://ncbi.nlm.nih.gov/pubmed/31219712
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1259/bjr.20190286
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!