ロード中...

Censoring Unbiased Regression Trees and Ensembles

This paper proposes a novel paradigm for building regression trees and ensemble learning in survival analysis. Generalizations of the CART and Random Forests algorithms for general loss functions, and in the latter case more general bootstrap procedures, are both introduced. These results, in combin...

詳細記述

保存先:
書誌詳細
出版年:J Am Stat Assoc
主要な著者: STEINGRIMSSON, JON ARNI, DIAO, LIQUN, STRAWDERMAN, ROBERT L.
フォーマット: Artigo
言語:Inglês
出版事項: 2018
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC6561730/
https://ncbi.nlm.nih.gov/pubmed/31190691
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1080/01621459.2017.1407775
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!