Chargement en cours...
NCNet: Deep Learning Network Models for Predicting Function of Non-coding DNA
The human genome consists of 98.5% non-coding DNA sequences, and most of them have no known function. However, a majority of disease-associated variants lie in these regions. Therefore, it is critical to predict the function of non-coding DNA. Hence, we propose the NCNet, which integrates deep resid...
Enregistré dans:
| Publié dans: | Front Genet |
|---|---|
| Auteurs principaux: | , , , , |
| Format: | Artigo |
| Langue: | Inglês |
| Publié: |
Frontiers Media S.A.
2019
|
| Sujets: | |
| Accès en ligne: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6549219/ https://ncbi.nlm.nih.gov/pubmed/31191597 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/fgene.2019.00432 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|