Carregant...
Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation
OBJECTIVE: Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provide...
Guardat en:
| Publicat a: | J Am Med Inform Assoc |
|---|---|
| Autors principals: | , , |
| Format: | Artigo |
| Idioma: | Inglês |
| Publicat: |
Oxford University Press
2017
|
| Matèries: | |
| Accés en línia: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6455898/ https://ncbi.nlm.nih.gov/pubmed/28505280 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1093/jamia/ocx045 |
| Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|