Φορτώνει......

Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care

BACKGROUND AND OBJECTIVES: Excess fluid balance in acute kidney injury (AKI) may be harmful, and conversely, some patients may respond to fluid challenges. This study aimed to develop a prediction model that can be used to differentiate between volume-responsive (VR) and volume-unresponsive (VU) AKI...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Τόπος έκδοσης:Crit Care
Κύριοι συγγραφείς: Zhang, Zhongheng, Ho, Kwok M., Hong, Yucai
Μορφή: Artigo
Γλώσσα:Inglês
Έκδοση: BioMed Central 2019
Θέματα:
Διαθέσιμο Online:https://ncbi.nlm.nih.gov/pmc/articles/PMC6454725/
https://ncbi.nlm.nih.gov/pubmed/30961662
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s13054-019-2411-z
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!