ロード中...
Analysing repeated hospital readmissions using data mining techniques
Few studies have examined how to identify future readmission of patients with a large number of repeat emergency department (ED) visits. We explore 30-day readmission risk prediction using Microsoft’s AZURE machine learning software and compare five classification methods: Logistic Regression, Boost...
保存先:
| 出版年: | Health Syst (Basingstoke) |
|---|---|
| 主要な著者: | , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
Taylor & Francis
2017
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6452839/ https://ncbi.nlm.nih.gov/pubmed/31214343 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1080/20476965.2017.1390635 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|