Carregant...
Splitting on categorical predictors in random forests
One reason for the widespread success of random forests (RFs) is their ability to analyze most datasets without preprocessing. For example, in contrast to many other statistical methods and machine learning approaches, no recoding such as dummy coding is required to handle ordinal and nominal predic...
Guardat en:
| Publicat a: | PeerJ |
|---|---|
| Autors principals: | , |
| Format: | Artigo |
| Idioma: | Inglês |
| Publicat: |
PeerJ Inc.
2019
|
| Matèries: | |
| Accés en línia: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6368971/ https://ncbi.nlm.nih.gov/pubmed/30746306 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.7717/peerj.6339 |
| Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|