ロード中...

Estimating Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and Machine Learning

Techniques of data mining and machine learning were applied to a large database of medical and facility claims from commercially insured patients to determine the prevalence, gender demographics, and costs for individuals with provider-assigned diagnosis codes for myalgic encephalomyelitis (ME) or c...

詳細記述

保存先:
書誌詳細
出版年:Front Pediatr
主要な著者: Valdez, Ashley R., Hancock, Elizabeth E., Adebayo, Seyi, Kiernicki, David J., Proskauer, Daniel, Attewell, John R., Bateman, Lucinda, DeMaria, Alfred, Lapp, Charles W., Rowe, Peter C., Proskauer, Charmian
フォーマット: Artigo
言語:Inglês
出版事項: Frontiers Media S.A. 2019
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC6331450/
https://ncbi.nlm.nih.gov/pubmed/30671425
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/fped.2018.00412
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!