Načítá se...

Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists

BACKGROUND: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS Med
Hlavní autoři: Rajpurkar, Pranav, Irvin, Jeremy, Ball, Robyn L., Zhu, Kaylie, Yang, Brandon, Mehta, Hershel, Duan, Tony, Ding, Daisy, Bagul, Aarti, Langlotz, Curtis P., Patel, Bhavik N., Yeom, Kristen W., Shpanskaya, Katie, Blankenberg, Francis G., Seekins, Jayne, Amrhein, Timothy J., Mong, David A., Halabi, Safwan S., Zucker, Evan J., Ng, Andrew Y., Lungren, Matthew P.
Médium: Artigo
Jazyk:Inglês
Vydáno: Public Library of Science 2018
Témata:
On-line přístup:https://ncbi.nlm.nih.gov/pmc/articles/PMC6245676/
https://ncbi.nlm.nih.gov/pubmed/30457988
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pmed.1002686
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!