Загрузка...
Learning time-varying information flow from single-cell epithelial to mesenchymal transition data
Cellular regulatory networks are not static, but continuously reconfigure in response to stimuli via alterations in protein abundance and confirmation. However, typical computational approaches treat them as static interaction networks derived from a single time point. Here, we provide methods for l...
Сохранить в:
| Опубликовано в: : | PLoS One |
|---|---|
| Главные авторы: | , , , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
Public Library of Science
2018
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6205587/ https://ncbi.nlm.nih.gov/pubmed/30372433 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0203389 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|