Загрузка...

Learning time-varying information flow from single-cell epithelial to mesenchymal transition data

Cellular regulatory networks are not static, but continuously reconfigure in response to stimuli via alterations in protein abundance and confirmation. However, typical computational approaches treat them as static interaction networks derived from a single time point. Here, we provide methods for l...

Полное описание

Сохранить в:
Библиографические подробности
Опубликовано в: :PLoS One
Главные авторы: Krishnaswamy, Smita, Zivanovic, Nevena, Sharma, Roshan, Pe’er, Dana, Bodenmiller, Bernd
Формат: Artigo
Язык:Inglês
Опубликовано: Public Library of Science 2018
Предметы:
Online-ссылка:https://ncbi.nlm.nih.gov/pmc/articles/PMC6205587/
https://ncbi.nlm.nih.gov/pubmed/30372433
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0203389
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!