Ładuje się......
Feature selection by optimizing a lower bound of conditional mutual information
A unified framework is proposed to select features by optimizing computationally feasible approximations of high-dimensional conditional mutual information (CMI) between features and their associated class label under different assumptions. Under this unified framework, state-of-the-art information...
Zapisane w:
| Wydane w: | Inf Sci (Ny) |
|---|---|
| Główni autorzy: | , |
| Format: | Artigo |
| Język: | Inglês |
| Wydane: |
2017
|
| Hasła przedmiotowe: | |
| Dostęp online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6167022/ https://ncbi.nlm.nih.gov/pubmed/30283157 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.ins.2017.08.036 |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|