Φορτώνει......
COMBINING PHENOTYPIC AND RESTING-STATE FMRI DATA FOR AUTISM CLASSIFICATION WITH RECURRENT NEURAL NETWORKS
Accurate identification of autism spectrum disorder (ASD) from resting-state functional magnetic resonance imaging (rsfMRI) is a challenging task due in large part to the heterogeneity of ASD. Recent work has shown better classification accuracy using a recurrent neural network with rsfMRI time-seri...
Αποθηκεύτηκε σε:
| Τόπος έκδοσης: | Proc IEEE Int Symp Biomed Imaging |
|---|---|
| Κύριοι συγγραφείς: | , , |
| Μορφή: | Artigo |
| Γλώσσα: | Inglês |
| Έκδοση: |
2018
|
| Θέματα: | |
| Διαθέσιμο Online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6166875/ https://ncbi.nlm.nih.gov/pubmed/30288208 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ISBI.2018.8363676 |
| Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|