Φορτώνει......

COMBINING PHENOTYPIC AND RESTING-STATE FMRI DATA FOR AUTISM CLASSIFICATION WITH RECURRENT NEURAL NETWORKS

Accurate identification of autism spectrum disorder (ASD) from resting-state functional magnetic resonance imaging (rsfMRI) is a challenging task due in large part to the heterogeneity of ASD. Recent work has shown better classification accuracy using a recurrent neural network with rsfMRI time-seri...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Τόπος έκδοσης:Proc IEEE Int Symp Biomed Imaging
Κύριοι συγγραφείς: Dvornek, Nicha C., Ventola, Pamela, Duncan, James S.
Μορφή: Artigo
Γλώσσα:Inglês
Έκδοση: 2018
Θέματα:
Διαθέσιμο Online:https://ncbi.nlm.nih.gov/pmc/articles/PMC6166875/
https://ncbi.nlm.nih.gov/pubmed/30288208
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ISBI.2018.8363676
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!