Načítá se...
Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients
BACKGROUND: Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patient...
Uloženo v:
| Vydáno v: | J Am Heart Assoc |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
John Wiley and Sons Inc.
2018
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6015420/ https://ncbi.nlm.nih.gov/pubmed/29650709 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1161/JAHA.117.008081 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|