ロード中...

MRI features predict p53 status in lower-grade gliomas via a machine-learning approach

BACKGROUND: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. METHODS: Preoperative MR images were retrospectively obt...

詳細記述

保存先:
書誌詳細
出版年:Neuroimage Clin
主要な著者: Li, Yiming, Qian, Zenghui, Xu, Kaibin, Wang, Kai, Fan, Xing, Li, Shaowu, Jiang, Tao, Liu, Xing, Wang, Yinyan
フォーマット: Artigo
言語:Inglês
出版事項: Elsevier 2017
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC5842645/
https://ncbi.nlm.nih.gov/pubmed/29527478
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.nicl.2017.10.030
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!