Wird geladen...
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI p...
Gespeichert in:
| Veröffentlicht in: | Comput Intell Neurosci |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artigo |
| Sprache: | Inglês |
| Veröffentlicht: |
Hindawi
2017
|
| Schlagworte: | |
| Online Zugang: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5569879/ https://ncbi.nlm.nih.gov/pubmed/28874909 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1155/2017/2727856 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|