Cargando...
Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees
OBJECTIVE: Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classifi...
Guardado en:
| Publicado en: | PLoS One |
|---|---|
| Autores principales: | , , , , , |
| Formato: | Artigo |
| Lenguaje: | Inglês |
| Publicado: |
Public Library of Science
2017
|
| Materias: | |
| Acceso en línea: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5391120/ https://ncbi.nlm.nih.gov/pubmed/28407016 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0175856 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|