Загрузка...

Latent variable modeling improves AKI risk factor identification and AKI prediction compared to traditional methods

BACKGROUND: Acute kidney injury (AKI) is diagnosed based on postoperative serum creatinine change, but AKI models have not consistently performed well, in part due to the omission of clinically important but practically unmeasurable variables that affect creatinine. We hypothesized that a latent var...

Полное описание

Сохранить в:
Библиографические подробности
Опубликовано в: :BMC Nephrol
Главные авторы: Smith, Loren E., Smith, Derek K., Blume, Jeffrey D., Siew, Edward D., Billings, Frederic T.
Формат: Artigo
Язык:Inglês
Опубликовано: BioMed Central 2017
Предметы:
Online-ссылка:https://ncbi.nlm.nih.gov/pmc/articles/PMC5299779/
https://ncbi.nlm.nih.gov/pubmed/28178929
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s12882-017-0465-1
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!