Yüklüyor......
ω-Theorems for Quotients of Zeta-Functions at Combinations of Points
Theorem A. Let q ≥ O and r ≥ O be integers. Let s = σ + it, let ζ(s) be the Riemann zeta-function, let G(o)(s) = 1, and [Formula: see text] and let F(s) = G(q)(s)/H(r)(s). Then as t → ∞ lim sup [unk]F(1 + it)[unk]/(log log t)(q+r+1) ≥ (6/π)(2))(r+1) exp {(q + r + 1)γ}, where γ is Euler's consta...
Kaydedildi:
| Yazar: | |
|---|---|
| Materyal Türü: | Artigo |
| Dil: | Inglês |
| Baskı/Yayın Bilgisi: |
1972
|
| Konular: | |
| Online Erişim: | https://ncbi.nlm.nih.gov/pmc/articles/PMC426980/ https://ncbi.nlm.nih.gov/pubmed/16592011 |
| Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|