ロード中...

CLASSIFICATION OF TUMOR HISTOPATHOLOGY VIA SPARSE FEATURE LEARNING

Our goal is to decompose whole slide images (WSI) of histology sections into distinct patches (e.g., viable tumor, necrosis) so that statistics of distinct histopathology can be linked with the outcome. Such an analysis requires a large cohort of histology sections that may originate from different...

詳細記述

保存先:
書誌詳細
主要な著者: Nayak, Nandita, Chang, Hang, Borowsky, Alexander, Spellman, Paul, Parvin, Bahram
フォーマット: Artigo
言語:Inglês
出版事項: 2013
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC3850768/
https://ncbi.nlm.nih.gov/pubmed/24319533
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ISBI.2013.6556499
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!