Lanean...

SMOTE for high-dimensional class-imbalanced data

BACKGROUND: Classification using class-imbalanced data is biased in favor of the majority class. The bias is even larger for high-dimensional data, where the number of variables greatly exceeds the number of samples. The problem can be attenuated by undersampling or oversampling, which produce class...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Blagus, Rok, Lusa, Lara
Formatua: Artigo
Hizkuntza:Inglês
Argitaratua: BioMed Central 2013
Gaiak:
Sarrera elektronikoa:https://ncbi.nlm.nih.gov/pmc/articles/PMC3648438/
https://ncbi.nlm.nih.gov/pubmed/23522326
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/1471-2105-14-106
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!