Lanean...
SMOTE for high-dimensional class-imbalanced data
BACKGROUND: Classification using class-imbalanced data is biased in favor of the majority class. The bias is even larger for high-dimensional data, where the number of variables greatly exceeds the number of samples. The problem can be attenuated by undersampling or oversampling, which produce class...
Gorde:
| Egile Nagusiak: | , |
|---|---|
| Formatua: | Artigo |
| Hizkuntza: | Inglês |
| Argitaratua: |
BioMed Central
2013
|
| Gaiak: | |
| Sarrera elektronikoa: | https://ncbi.nlm.nih.gov/pmc/articles/PMC3648438/ https://ncbi.nlm.nih.gov/pubmed/23522326 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/1471-2105-14-106 |
| Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|